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SUMMARY 

 

 

 This technical report describes a computational research task performed to support 

continuing investigations into the electromagnetic behavior of photonic crystals. Simple 

dielectric vein structures are used to mimic the configuration of the photonic crystals found 

within the wings of the Green Hairstreak Butterfly, an insect noted for its use of photonic 

crystals for coloration. An earlier investigation employed a square dielectric vein structure to 

approximate these photonic crystals. In this case, the numerical model is improved. A 

rectangular vein structure is employed with two distinct values for the vein dielectric 

permittivity. The performance of the rectangular model is compared with that of the square 

model for both the Transverse Electric and Transverse Magnetic waves under mirror symmetry. 

The structure of attendant photonic bands is discussed. 

 

 

 



DISTRIBUTION A 

DISTRIBUTION A 

 

1 

 

1 INTRODUCTION 

 

1.1 Background 

 

 The application of optics is well established in today’s society and has been so since the 

days of Galileo’s telescope and throughout the evolution of light microscopy. Optics, the physics 

of light, is a natural subdivision of the broader physics of electrodynamics and involves the in-

depth study of electromagnetic waves propagating through various media. The propagation of 

electromagnetic waves can be controlled by manipulating the media containing the light. A good 

example of this idea is modern day optical fiber. An optical fiber is a specially designed 

waveguide that can propagate light over great distances with little or no losses. This type of 

optical device and attendant waveguide theory is discussed more thoroughly in Reference [1]. 

 

 In the pages that follow, we turn our attention to a different type of optical device known 

as the Photonic Crystal (PC). PCs involve a higher level of complex light wave interactions than 

do optical fibers. In one, two or three dimensional space, these crystals are constructed by using 

a periodic distribution of dielectric material. A dielectric material is the matter carrying the light. 

Think of glass or even water as examples of dielectric media. Like optical fibers, PCs propagate 

light with very low losses.[2] The periodic distribution of dielectric material creates an array of 

interfaces in the crystal. At each interface, light waves both scatter and transmit electromagnetic 

energy. The superposition of incident and reflected waves, through the phenomenon of 

interference, may “block” the propagation of light of certain wavelengths. If light of all possible 

propagation directions (wave vectors) for a finite range of wavelengths (or frequencies) is 

blocked, the crystal exhibits a photonic band gap (PBG).[2] Band gaps can exert a strong effect 

over the colors of light propagated by a given photonic crystal. These crystals are purposeful and 

commonly exist in nature, particularly among insects, e.g., photonic crystals are found in certain 

butterfly wings and in the exo-skeletal chitin of certain species of beetle.[3] It is photonic 

crystals that are believed to cause the brilliant coloration found in many insects and birds.[4] 

 

 It is interesting to note that light (photons) interacting with the dielectric potential exhibit 

many of the same characteristics demonstrated by electrons encountering an atomic potential. Of 

course, the atomic potential is created by the distribution of electrical charge existing around 

atoms. By cleverly tailoring the atomic potential within a tiny silicon structure, one may 

construct a semi-conductor such as a transistor. This type of device is governed by solid state 

physics.[5] Because of the similar behavior of electromagnetic waves, we can apply many of the 

same techniques used in solid state physics to study photonic crystals. As it happens, mainly the 

differential operator and boundary conditions change when migrating from the study of electrons 

to photons. For electrons, we utilize the Schrödinger Equation while Maxwell’s equations are 

applied for photons.[2] 

 

1.2 Objectives 

 

 Section 2 begins with a concise exposition of the practical mathematics surrounding the 

solution of Maxwell’s equations for light waves propagating in dielectric media. Our analysis is 

based exclusively in the frequency domain to permit the identification of optical frequencies and 
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modes. The system of equations is placed in time-harmonic form to derive the master eigenvalue 

problem. Vectors within the crystal lattice are then used to derive the reciprocal lattice in wave 

vector space. The associated Bloch wave vectors are used to place the master equation in Bloch 

form. 

 

 Section 3 contains a description of the square and rectangular crystal lattices of interest. 

The associated reciprocal lattices are presented, and the key points outlining the Brillouin zones 

for each reciprocal lattice are shown. The distribution of dielectric material is described for each 

2D lattice. 

 

 Section 4 presents band diagrams (dispersion relations) for the square and rectangular 

lattices. Two different values of the relative dielectric permittivity are considered. Also, some of 

the mode shapes are plotted for the lower frequency Transverse Electric (TE) and Transverse 

Magnetic (TM) modes. We discuss specific differences between the optical modes for the square 

and rectangular lattices. Section 5 presents a summary for this report as well as a wrap-up of the 

conclusions. 
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2 THEORY 

 

2.1 Maxwell’s Equations 

 

 It is comforting to note, but perhaps a little less interesting, that even though many 

photonic crystals are small, we may treat light propagating within these crystals as 

electromagnetic waves instead of as a stream of photons. That is to say, we need not invoke 

quantum optics (yet).[6] As a result, this report will regard light propagation in PCs through the 

use of classic electromagnetism. In this context, the physics of time-dependent electromagnetic 

waves is governed by Maxwell’s equations, a confluence of four separate partial differential 

equations derived over many years by researchers such as Coulomb, Gauss, Faraday and 

Ampere.[7] These equations were finally corrected for time dependency and assembled into a 

system by J.C. Maxwell.[8] The first equation in this system is Coulomb’s (or Gauss’) Law, i.e., 

 

                                                                       D                                                                 (1) 

 

where D , in the remainder of this work, is denoted as the displacement field, and  is the free 

charge density, a function defined in space. By assuming that space contains no free magnetic 

poles, we have that the second equation is 

 

                                                                      0 B                                                                 (2) 

 

(as it happens, free magnetic monopoles have never been discovered), where B  is denoted the 

magnetic induction field. The third law is due to Faraday, i.e., 

 

                                                                 0





t

B
E                                                             (3) 

 

where E  is the electric field, and t  is the time coordinate. The final equation is Maxwell’s 

corrected form of Ampére’s Law. One may recall, that in its original form, Ampére’s “law” was 

not suitable for time dependent fields. The corrected equation is 

 

                                                                 J
D

H 





t
                                                           (4) 

 

where H  is denoted as the magnetic field; J is the current density function. These equations (1) 

through (4) are remarkable for a couple of different reasons. As a primary consideration, 

Maxwell’s equations involve vector-valued quantities, the fields B, E, H and D as well as the 

current density vector J. Secondly, from the standpoint of mathematics, we have eight equations 

and the fifteen unknowns B, E, H, D and J; even if we assume that   is known, the system is 

not closed. Note that each vector component is a scalar unknown. The closure difficulty is 

resolved by invoking constitutive equations to relate D to E and H to B. We have that 

 

                                                                        ED                                                                   (5) 
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where   is the dielectric permittivity for the medium. For isotropic media, it may be expressed 

in terms of the vacuum permittivity (the permittivity of empty space 0 ), i.e., 

 

                                                    e
 1

0

    or    r 0                                                    (6) 

 

e  is the medium’s electric susceptibility.[8] The term r  in equation (6) is denoted as the 

medium’s relative dielectric permittivity. In some cases, this material property is frequency 

dependent. For anisotropic media, the relationship between the components of D and E is more 

complicated. According to the Bloembergen model, we have that 

 

                                                         kjijkjij
i EEE

D





0

                                                     (7) 

 

where iD  and iE  represent the i
th

 components of the displacement and electric fields, 

respectively.[2] Instead of the simple constants used in (6), ij  and ijk  are tensor-based 

quantities that represent those cases where the point dielectric permittivity changes depending 

upon the direction of light propagation. 

 

 A similar constitutive relationship is employed to relate the magnetic and magnetic 

induction fields, i.e., 

 

                                                                       HB                                                                   (8) 

 

where   is the magnetic permeability of the light propagating medium. This parameter is often 

measured with respect to the vacuum permeability 0 .[8] Using a linear model for the 

permeability, we have 

 

                                                                  )( m  10                                                            (9) 

 

in that m  is the magnetic susceptibility of the medium.[7] For anisotropic magnetic media, we 

may use the tensor-based form 

 

                                                                      jiji BH                                                              (10) 

 

a slightly different form of (8).[8] Normally, the magnetic susceptibility has a value near unity, 

but it may take on other values. The three equations represented by (10) require inversion to 

match the mathematical form of (8). Equations (5) and (8) provide six additional equations to 

help close the system. A potential formulation may be used to provide a final closure relation 

depending upon the choice of solution method for a particular problem. 
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2.2 Simplifying Maxwell’s Equations 

 

 In this report, our goal is to solve Maxwell’s equations for particular two-dimensional 

photonic crystals. The solution is performed in frequency space; both light frequencies and 

optical mode shapes are to be determined. In order to enable this analysis, Maxwell’s equations 

are first cast in a simplified form. We begin by making a common assumption for light wave 

propagation problems, i.e., the medium contains no free electric charge ( 0 ) and no current 

density ( 0J ). The dielectric permittivity is assumed to be independent of frequency and a 

function of position only; the magnetic permeability is set at the vacuum value. The space 

variables for the field are annotated by the position vector r. With these simplifications, the 

Maxwell equations can be written as 

 

                                                                 0 ),( trH                                                            (11) 

 

                                                             0 )],()([ trEr                                                       (12) 

 

                                                       00 





t

t
t

),(
),(

rH
rE                                                  (13) 

 

                                                    00 





t

t
t

),(
)(),(

rE
rrH                                               (14) 

 

For efficiency of notation, the relative dielectric permittivity r  is now and hereafter denoted by 

)(r  in equations (12) and (14).[2] The next step is to address the time dependency of these 

equations. 

 

 As we stated earlier, our analysis is confined to frequency space, so the fields are 

assumed to be harmonic (or periodic) in time. Hence, they may be expressed in the form 

 

                                                       )exp(),(),( titt  rHrH                                                   (15) 

 

                                                        )exp(),(),( titt  rErE                                                   (16) 

 

where   is the angular frequency for the light, and of course, i  is the imaginary unit. Using 

Euler’s formula, )sin()cos()exp( titti   . When (15) and (16) are substituted into the 

divergence equations (11) and (12), we obtain 

 

                                                                   0 )(rH                                                             (17) 

 

                                                               0 )]()([ rEr                                                        (18) 
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The Faraday (13) and Ampére (14) equations can be handled in a similar manner, yet an 

imaginary factor appears when the complex exponential is factored from these equations. The 

resulting equations are 

                                                         00  )()( rHrE i                                                  (19) 

 

                                                   00  ),()(),( tit rErrH                                             (20) 

 

The latter two equations are coupled, but by following Joannopoulos [2], they may be decoupled. 

Equation (20) is divided by the relative permittivity, and the curl of the result is taken to obtain 

the intermediate equation 

 

                                              00 






 
 )(

)(

)(
rE

r

rH



i                                            (21) 

 

Next equation (19) is solved for )(rE  and substituted into (21). The result is 

 

                                                000

2 






 
 )(

)(

)(
rH

r

rH



                                           (22) 

 

Equation (22), denoted as the master equation, is quite important; note that c
2
 , the speed of light 

squared is the inverse of 00  , so we have that 

 

                                                      )(
)(

)(
rH

r

rH
2

















 


c




                                               (23) 

 

The master equation consists of a linear differential form operating on the magnetic field and set 

equal to a constant times the magnetic field creating an eigenvalue problem with eigenvalue 
2)/( c and eigenvector H(r). The linear differential form (or operator) is written as 

 

                                                             









)(r

1
                                                       (24) 

 

When H(r) has been determined, the electric field is obtained from (20) as 

 

                                                        )(
)(

)(
0

rH
r

rE 


i
                                                  (25) 

2.3 Frequency – Wave Vector Solution 

 

 The primary output of the analyses that follow is a numerical relationship between 

frequency ( ) and the wave vector ( ),,( zyx kkkk ) for propagating light waves. This 
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relationship is often referred to as the dispersion relation. The wave vector magnitude |||| kk  is 

simply the wavenumber  /2 , where   is the wavelength for the light. The wave vector 

implies a sense of direction to the wave. For an analysis in 2D or 3D, there is a locus of pertinent 

wave numbers revealed by the theory. For example, when considering a 2D problem at the plane 

of mirror symmetry, we can, without a loss of generality, assume that the crystal is uniform 

along the z axis with 0zk . As a result, light propagation is confined to the xy-plane with the 

attendant wave vector ( )0,,( yx kkk ). It follows that the dispersion relation is a locus of the 

form 

 

                                                                   ),( yx kk                                                             (26) 

 

where xk  and yk vary, in the most general sense, between 0 and ∞. More specifically, we choose 

only the most pertinent wave vectors in the reciprocal plane, particularly those bordering the 

Brillouin zone.[2,9] To accomplish this task, we must express the magnetic field in Bloch form. 

 

 Bloch form is closely associated with the idea that our photonic crystal is composed of an 

array of dielectric material that is periodic (or repetitive) in some sense across the entirety of the 

crystal lattice. More specifically, we require the lattice to have discrete translational symmetry 

with a lattice constant vector a .[2] Let the vector R be an integer multiple of the lattice constant 

vector, i.e., 

 

                                                                        aR n                                                                (27) 

 

Then values of the dielectric permittivity abide by the relationship 

 

                                                                  )()( Rrr                                                           (28) 

 

for all possible integer values of n . Related to the geometric lattice in physical space is the 

reciprocal lattice cast in wave vector space. The reciprocal lattice vectors jb  are defined as 

follows.[10] 

 

                                                                   ijij 2ab                                                          (29) 

 

Based upon this definition, the Bloch wave vector is defined in 3-space as 

 

                                                            332211 bbbk kkk                                                    (30) 

 

Each wave vector (30) existing within the Brillouin zone (of the reciprocal lattice) identifies an 

eigenstate with angular frequency )(k for the operator (24).[2] The associated eigenvector (or 

eigenfunction) has the form 
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                                                          )()exp()( rurkrH kk  i                                                 (31) 

 

In this eigenvector, )(ruk  is a periodic function defined on the physical lattice. We can find a 

partial differential equation for this function by substituting (31) into the master equation (23), 

i.e., 

 

                                )()exp()()exp(
)(

1
2

rurkrurk
r

kk 
















 i

c
i




                         (32) 

 

The term inside of the square brackets can be simplified by applying the vector identity 

 

                                               grgrgr  )()())(( fff                                           (33) 

 

Equation (33) requires ))(exp( rk  i . This expression is derived as follows. 

 

                     

)exp(

)exp()exp()exp())(exp(

rkk

rkrkrkrk














ii

kii
x

x
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x
i jlj

l

j

j

l


          (34) 

By using (33) and (34) in (32), we obtain 

 

                     (r)urk(r)uk(r)urk
r

kkk )exp(}{)exp(
)(

1
2


















 i

c
ii




             (35) 

 

Simplifying (35) further, we have that 

 

                          (r)urk(r)ukrk
r

kk )exp(}{)exp(
)(

1
2


















 i

c
ii




                    (36) 

 

Now (33) is applied again to the square bracketed term with )exp()( rkr  if  and 

)()()(/1 rukrg ki  . The result is 
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               (37) 

 

Continued simplification with the use of (34) yields a new eigenvalue equation 
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                                           )()(
)(

)(
)(

2

ruru
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k
k kk 




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





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






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
c

i
i




                                    (38) 

 

The operator { } in (38) is also Hermitian, yet it is not used alone.[2] We can derive a 

fundamental constraint equation for transverse waves by substituting the Bloch form (31) into 

(17). With the use of the vector identity 

 

                                               grgrgr  )()())(( fff                                           (39) 

 

we obtain the result 

 

                                                          0)()(  ruk ki                                                           (40) 

 

Equation (38) subject to the constraint (40) and the periodicity condition 

 

                                                            )()( Rruru kk                                                            (41) 

 

can be solved for the frequencies and eigenfunctions describing light propagation in the photonic 

crystal.[11] Solving this set of equations on a dielectric lattice is the purpose of the MIT 

Photonic Bands (MPB) computer program applied to produce the results shown later in this 

report. 
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3 LATTICE DESCRIPTIONS 

 

 The goal of the present work is to present and contrast optical modes for a set of square 

and rectangular dielectric vein structures. These 2D photonic crystals (uniform in the third 

Cartesian direction) are selected for study because of their likeness to a simplified view of the 

photonic crystals found in the wings of Callophrys rubi, the green hairstreak butterfly.[3] An 

electron micrograph of a part of the wing is shown in Figure 1. While the computational lattices 

shown below do not approach the level of complexity of the actual butterfly wing, some of the 

larger geometric structures may be captured by an elementary numerical model. 

 

 
Figure 1. Electron micrograph of photonic crystals located in the wings of Callophyrs rubi[3] 

3.1 Square Dielectric Vein Lattice 

 The square dielectric vein lattice is a relatively simple 2D geometric object.[2] The lattice 

is comprised of thin horizontal and vertical veins of dielectric material separating square regions 

filled with air. Figure 2 contains a representative picture of the lattice with the dielectric veins 

(uniform thickness) colored black; air filled regions are white.  

 

 

Figure 2. Diagram of the Square Dielectric Vein Lattice. Unit cell is repeated three times in the horizontal and vertical 

directions 
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For this lattice, the physical lattice vectors are: 

 

                                                                   
)1,0(

)0,1(

2

1

a

a





a

a
                                                               (42) 

 

Recall that Maxwell’s equation are scale invariant, so the lattice constant “a” in (42) is an 

arbitrary scaling factor (units of distance) that may be used to establish a lattice of any desired 

size as long as we do not violate the minimum scale for the electromagnetic wave model. 

Equation (29) may be used to show that the reciprocal lattice vectors are: 

 

                                                                  

)1,0(
2

)0,1(
2

2

1

a

a









b

b

                                                             (43) 

 

The dielectric veins have width of 0.165a (appropriately scaled with the lattice constant). Figure 

3 contains a plot of the unit cell for this physical lattice. In this figure, the dielectric material is  

 

 
Figure 3. Unit cell for the square dielectric vein lattice. Dielectric boundaries are shown in red. Unit cell boundary is 

shown in green. All lengths have the dimensions of the lattice constant a 

outlined with the color red and has a cruciform shape centered at the figure’s center. The 

boundary for the unit cell is delineated by the green line. The calculations conducted with the use 

of this lattice geometry are dimensionless, yet the x and y coordinates naturally inherit the 

dimensions of the lattice constant a. This report considers two values for the relative dielectric 

permittivity. The baseline case sets 98.  to provide a strong jump in the electric field at the 

dielectric-air interface. The baseline is selected to establish a dielectric/air permittivity difference 

of nearly 10:1. The second case sets 521.  somewhat closer to a value for chitin, a material 

commonly found in butterfly wings. In future studies,   is to be raised to 2.4, a common value 

for chitin.[12] 
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 The reciprocal of the square dielectric vein lattice can be easily produced by spanning the 

reciprocal lattice vectors. A wave vector ),( yx kkk in the reciprocal lattice is given by the  

formula 

 

                                                 ,,,,, 21021  mlml bbk                                        (44) 

 

More specifically, 

 

                                                  ,,,,,),( 210
2

 mlml
a


k                                          (45) 

 

For equation (45), dimensions are only assigned by the lattice constant a ; if the lattice constant 

is assigned specific length dimensions, k then possesses dimensions of a wave number. The 

reciprocal lattice for the square dielectric vein configuration is shown in Figure 4. 

 

 
Figure 4. Reciprocal lattice for the square dielectric vein configuration. Axes are delineated with dimensions of wave 

number. The red points shown in the diagram are produced by the mapping (45). The red square outlines the Brillouin 

zone for this lattice. The blue lines outline the irreducible Brillouin zone. Key points are defined at the vertices of the 

irreducible zone 

Figure 4 is constructed by summing integer multiples of the reciprocal lattice vectors. The 

Brillouin Zone (BZ) (more appropriately titled as the first Brillouin zone) is produced by the 

procedures described in References 2 and 9. In short, it is minimum area figure that is bounded 

by parallel rays constructed through the center points of line segments extending between 

reciprocal lattice points. The irreducible Brillouin zone (IBZ), shown outlined in blue, is the 

minimum area locus that can be used to map the solution in the rest of the BZ by a series of 

simple rotations and translations.[2] The points at the vertices of the IBZ are key locations for 

calculation of the frequency space solution. 

 

3.2 Rectangular Dielectric Vein Lattice 

 

 The principal photonic crystal of interest in this report is the rectangular dielectric vein 

lattice. The square lattice discussed in the preceding section is actually a special case of the 
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rectangular lattice. The rectangular lattice is of interest since its configuration is more like the 

array of chitin shown in Figure 1. A picture of the rectangular dielectric vein lattice is shown in 

Figure 5. Three multiples of the unit cell are shown in each direction. 

  

 
 

Figure 5. Diagram of the rectangular dielectric vein lattice. Unit cell is repeated three times in the horizontal and vertical 

directions. Note the difference between vertical and horizontal vein widths 

 In Figure 5, the black color represents dielectric material while air is represented by 

white. For this photonic crystal, the width of vertical veins is 0.13157a ; horizontal veins have a 

width of 0.052631a where a is the lattice constant. The air gap width and height are 0.86842a 

and 0.21052a, respectively. These parameters are chosen to match the aspect ratio of the chitin-

air cells shown in Figure 1. Two parameters are required to describe the physical lattice vectors 

for this configuration. These vectors are 

                                                                     
),(

),(

0

01

2

1

a

a





a

a
                                                           (46) 

 

In this case,   is chosen as 0.26315. The unit cell for the physical lattice is shown in Figure 6. 

 

 
Figure 6. Unit cell for the rectangular dielectric vein lattice. Dielectric boundaries are shown in red. Unit cell boundary is 

shown in green. All lengths have the dimensions of the lattice constant a 

 

The reciprocal lattice vectors are derived as 
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                                                     (47) 

 

Wave vectors in the reciprocal lattice are defined as in equation (44) with the specific result 

 

                                                 ,,,,,, 210
2









 ml
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l

a 
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k                                         (48) 

 

A diagram of the reciprocal lattice for the rectangular vein structure is shown in Figure 7. One 

 

 
Figure 7. Reciprocal lattice for the rectangular dielectric vein configuration. Axes are delineated with dimensions of wave 

number. The magenta points shown in the diagram are produced by the mapping (45). The blue square outlines the 

Brillouin zone for this lattice. The red lines outline the irreducible Brillouin zone. Key points are defined at the vertices of 

the irreducible Brillouin zone 

 

may notice that the IBZ is rectangular in shape for this lattice.[9] For the square lattice, the IBZ 

is triangular. A possible explanation for this result is that the rectangular lattice lacks a symmetry 

occurring in the square lattice (at the yx kk   line). This result is very interesting and begs future 

investigation concerning symmetry operations in the Brillouin zone. The lattice geometries 

described in this and the preceding sections summarize the input used for calculating the 

electromagnetic behavior of the square and rectangular 2D photonic crystals. Again, as with the 

square lattice, our choice of relative dielectric permittivity values remains the same. 

  



DISTRIBUTION A 

DISTRIBUTION A 

 

15 

 

4 RESULTS 

 

 The electrical field results (dispersion relations and mode shapes) shown below have 

been calculated by using the MIT Photonic Bands (MPB) computer code developed by the 

Joannopoulos  Ab Initio Physics Group at the Massachusetts Institute of Technology.[11] The 

theory behind the frequency domain solution methods applied within MPB is briefly discussed in 

Section 2 of this report. In this section, we present the results predicted by MPB for the 2D 

photonic crystal configurations presented in the preceding section. 

 

4.1 Transverse Electric (TE) Wave Propagation at 908.  

 

 Electromagnetic wave solutions for the square and rectangular vein dielectric lattices 

have been calculated at a relative dielectric permittivity ( ) value of 8.90. Figure 8 contains the 

dispersion relations (band diagrams) for TE wave propagation at 98.  for both lattices.  

 

 
Figure 8. Dispersion relations for transverse electric (TE) wave propagation in the square and rectangular dielectric vein 

lattices at relative permittivity 8.9. The dispersion relation for the square lattice is shown in the left plot while the plot for 

rectangular lattice is presented on the right. The notation wave vector number is used to indicate the location of the wave 

vector on the boundary of the irreducible Brillouin zone. Only the first five eigenmodes are displayed 

Within the square lattice, a band gap is evident for TE waves. The rectangular lattice exhibits no 

band gaps. It is interesting to compare 2D contour plots of the eigenmode shapes for these cases. 

We begin by examining the TE mode shapes for 98. , a baseline case useful for comparison. 

Recall that for the TE mode, the electric field is confined to the xy-plane; its z component is zero. 

The associated magnetic field is aligned with the z axis. All of the mode shape plots that follow 

are computed at wave vectors (k-points) k = 2π/a (0.5, 0.5, 0) for the square lattice and at k = 

2π/a (0.5, 1.9, 0) for the rectangular lattice. These k-points are identified in Figure 8 with wave 

vector number 11 for both lattices. For the fundamental frequency, Figure 9 contains the plots of 

the real part of xE for each lattice. Note that both lattices are graphed on plots of the same size 

even though their aspect ratios differ. Doing so facilitates a side-by-side comparison of the 

electric field components. As is evident in Figure 9, the difference in this field component is 

quite large when moving between the square lattice (left) and the rectangular lattice (right). In 

fact, xE  is many times stronger in the rectangular lattice than it is in the square lattice. The mode  
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Figure 9. Real part of Ex for the fundamental frequency computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the 

square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 8.90 

 

 
Figure 10. Real part of Ey for the fundamental frequency computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the 

square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 8.90 

 

shape is more widespread on the rectangular lattice than on the square lattice. On the square 

lattice, variations in xE  are mostly confined to the vein junctions (or spots [2]). At these 

junctions, xE  exhibits quadrupolar variation. For the rectangular lattice, xE
 
is significantly 

compressed elongating it in the x direction. It is also interesting to see that nodes are located 

along the horizontal veins. Also, the periodic variation in xE  extends well beyond the lattice 

shown. In fact, one needs to extend the lattice over eight unit cells in order to see the field 

variation. The real part of the y component of the electric field yE is shown in Figure 10. In this 
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case, field component oscillations for the square lattice are still centered around the vein 

junctions, but possess a dipolar character. Nodes are situated within the air space throughout the 

lattice. For the rectangular lattice, the field has greater extent with periodicity extending beyond 

the section of the lattice shown. The extent of the field can be observed if more cells are plotted. 

The locus of field nodes occurs along horizontal lines through the center of the air space. The 

peaks in Ey are also out of phase with respect to the peaks in Ex. 

 

 We continue our examination of TE mode propagation by considering the next higher 

frequency for both lattices. Figure 11 contains plots of the real part of Ex at the same k-points 

selected for the square and rectangular lattices. It is evident that the field behavior is different in 

 

 
Figure 11. Real part of Ex  for the second frequency computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the square 

lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 8.90 

 
Figure 12. Real part of Ey  for the second frequency computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the square 

lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 8.90 
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this case, especially for the square lattice. Figure 12 contains the associated contour plots for Ey. 

For the square lattice at this the next to lowest frequency, the differences in electric field 

behavior are very pronounced. For the fundamental frequency, the field activity is concentrated 

near the vein lattice spots (vein junctions) with some dipolar activity on the vertical veins. Since 

the veins possess high relative dielectric permittivity 98. , we expect that the field will 

concentrate near the veins.[2] For the second frequency we see different behavior for the square 

lattice. Ex nows concentrates in the air space between the veins, i.e., in the air band. The field 

variation also indicates dipolar variation (horizontal for Ex and vertical for Ey). Why does the 

electric field change so dramatically? The answer is simple. Figure 8 clearly shows that a band 

gap exists on the square lattice for the TE mode between the fundamental and second 

frequencies. 

 Differences calculated on the rectangular lattice when transitioning between the two 

frequencies are not as pronounced. On this lattice, Ex still has nodes located along horizontal 

lines in the air space. The highest magnitude values of Ex lie on the horizontal veins. Ey is the 

stronger component of the two. This behavior may be caused by the fact that horizontal dielectric 

veins are closer together and tend to concentrate field lines nearby. On the other hand, the mode 

shape (or field distribution) for Ey changes to a greater degree. The peaks and troughs in this 

field component clearly occur in the air spaces, and the component varies more slowly in the 

horizontal direction than in the vertical direction. The phase difference between Ex and Ey 

remains and possesses roughly the same magnitude as for the fundamental mode. Of course, the 

second frequency is very close to the fundamental for the wave vector in question (at wave 

vector number 11 in Figure 8). Hence, the modes behave in a similar manner. 

 

 Continuing with our investigation, we turn our attention to the third frequency exhibited 

at the k-points in question. Contours of the real part of the x component of the electric field are 

shown in Figure 13 for both the square and rectangular lattices. For this case, field variation is 

 

 
Figure 13. Real part of Ex for the third frequency computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the square 

lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 8.90 
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again centered at spots in the square lattice. For the rectangular lattice, variation in )( xE is 

similar to that exhibited at the second frequency. Extrema exist at loci along horizontal veins and 

at the centers of the air spaces. Figure 14 contains the corresponding plots for )( yE . On the  

 

 
Figure 14. Real part of Ey for the third frequency computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the square 

lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 8.90 

square lattice, the variation of Ey is similar to that of Ex; these field oscillations are concentrated 

again around the vein junctions (spots) and possess some of the characteristics of quadrupoles. 

The variation of Ex at the same frequency is more dipolar. On the rectangular lattice, the field 

oscillations are still predominantly oriented in the horizontal direction. The field nodes exist 

horizontally along veins and at the air gap centers. The periodic nature of the field extends well 

beyond the section of the lattice shown, and the phase difference is still exhibited between x and 

y electric field components. 

 

4.2 Transverse Electric (TE) Wave Propagation at 521.  

 

 In this section of the report, we repeat the analyses perform in Section 4.1 now for the 

relative permittivity of 521. . The dispersion relations for the square and rectangular 

dielectric vein lattices are shown in Figure 15. The first characteristic of the band diagrams 

shown is that neither lattice possesses a bad gap. This result is anticipated since the difference 

between the relative permittivity (index of refraction squared) for the dielectric and air is so 

small. Secondly, the band diagram for the rectangular lattice is sharply peaked and jagged at 

several wave vector numbers, far more so than for the square lattice. This jaggedness is very 

pronounced at the lower frequencies for a wide range of wave vectors. The rectangular lattice 

also reaches, for a given eigenmode, a higher range of frequencies than does the square lattice. 

These regions in the dispersion relation graph correspond to the edges of the Brillouin zone 

where ky changes with kx is fixed. In the crystal lattice, this region corresponds to the edges that 

change in the y direction. The higher frequencies encountered in this region may be explained as 
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follows. In order to fit a fixed number of wavelengths within this distance, a comparatively 

shorter wavelength and thus a higher frequency must be used (when compared to the square  

 
Figure 15. Dispersion relations for transverse electric (TE) wave propagation in the square and rectangular dielectric vein 

lattices at relative permittivity 1.52. The dispersion relation for the square lattice is shown in the left plot while the plot 

for rectangular lattice is presented on the right. We notation wave vector number is used to indicate the location of the 

wave vector on the boundary of the irreducible Brillouin zone. Only the first five eigenmodes are displayed. 

lattice). When examining the mode shapes for this case, we use the same k-points specified in the 

preceding section. 

 

 Figure 16 contains TE mode shapes for the x component of the electric field Ex at the 

fundamental frequency calculated at wave vector number 11 for both the square (left) and 

rectangular (right) lattices. For the square lattice, Ex clearly exhibits dipolar behavior with the 

field nodes aligned along the vertical veins. Adjacent horizontal lattice tiers alternate in phase. 

 

 
Figure 16. Real part of Ex for the fundamental frequency computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the 

square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 1.52 
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On the rectangular lattice, Ex shares the same dipolar character, but the field oscillations are more 

extensive on the lattice. The nodes are oriented along vertical aligned loci located at the centers 

of air gaps. These vertical loci are spaced apart at a periodicity (in terms of unit cells) exceeding 

the extent lattice segment shown in the figure. The magnitude of the variations in Ex for the 

 

Figure 17. Real part of Ey for the fundamental frequency computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the 

square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 1.52 

 

Figure 18. Real part of Ex for the second frequency computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the square 

lattice and at (right) k-point (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 1.52 

rectangular lattice are considerably larger than those calculated for the square lattice. The peak 

values in Ex are located at air gap centers. Figures 17 present the y component of the electric field 

for the fundamental frequency. This component’s behavior is interesting because on the square 

lattice, it possesses almost no detectable magnitude. Hence, the electric field for the square 
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lattice is fully aligned with the x axis. On the other hand, the rectangular lattice Ey has its peak 

magnitudes centered along the horizontal veins with nodes situated along horizontal loci located 

at the air gap centers. The phase difference for the x and y components persists as shown in the 

previous cases. The structure of the electric field for the rectangular lattice exhibits a great deal 

of commonality for different frequencies. Consider the behavior of the electric field for the two 

lattices at the second modal frequency. Ex for the square lattice, shown in Figure 18, exhibits  

 
Figure 19. Real part of Ey for the second modal frequency computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the 

square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 1.52 

fluctuations centered at the vein junctions (spots) and within the air gaps. A quadrupole-like 

variation is observed within the air gaps while between vein spots, a dipolar fluctuations exists. 

Ex for the rectangular lattice exhibits the same dipolar variation with the field peaks located 

along the horizontal veins. The horizontal node loci are found at the air gap centers. Figure 19 

contains the plots of Ey for the second modal frequency. The square lattice’s field is dominated 

by dipolar variations that recur throughout the crystal. These variations are centered on 

horizontal veins with an additional lobe of the fluctuation located at the air gap center. For the 

rectangular lattice, Ey still possesses a dipolar shape except peak field magnitudes are located 

along horizontal loci located at air gap centers. The field contours do exhibit some higher order 

characteristics like multiple local maxima and minima. We continue with our investigation by 

considering electric field behavior at the third modal frequency. 

 Figure 20 contains plots of Ex for the third modal frequency computed for the square and 

rectangular lattice structures ( ). The square lattice is characterized by the presence of monopoles 

centered at the vein spots. The rectangular lattice exhibits a more complicated system of dipoles 

aligned with the horizontal veins. The peaks are centered on both the horizontal veins and at the 

air gap centers. The maximum positive and negative peaks alternate from vein to air gap when 

scanning in the y direction along the lattice.  The plots for Ey are provide in Figure 21. In this 

case, the square lattice is characterized by the presence of more monopoles, this time located at 

the air gap centers. The positive and negative peak magnitudes alternate between adjacent 

monopoles. In this case, nodes form loci along the veins. The rectangular lattice clearly 
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Figure 20. Real part of Ex for the third modal frequency computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the 

square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 1.52 

 
Figure 21. Real part of Ey for the third modal frequency computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the 

square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 1.52 

 

exhibits more complex dipole behavior with peak values existing along horizontal veins and at 

air gap centers. In this case, a cycle requires 2/3 of a unit cell (vertically) for completion. As in 

the previous cases, there is an outstanding phase difference between Ex and Ey. It seems evident 

that the field behavior on the rectangular lattice is governed, to a great degree, by field 

compression created by the reduced spacing between horizontal veins. The spacing between 

horizontal veins is roughly 26% of the spacing between vertical veins. 
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4.3 Transverse Magnetic (TM) Wave Propagation at 908.  

 

 Our discussion of electromagnetic wave propagation on the two test lattices is incomplete 

without including a discussion of TM wave propagation. Recall that since the magnetic field 

components are confined to the xy-plane, there is only one electric field component, Ez , aligned 

in the z direction. Band diagrams have been prepared for TM propagation. Figure 22 contains 

these diagrams for the test lattices at 908. . The square lattice possesses a small band gap of 

 
Figure 22. Dispersion relations for transverse magnetic (TM) wave propagation in the square and rectangular dielectric 

vein lattices at relative permittivity 8.90. The dispersion relation for the square lattice is shown in the left plot while the 

plot for rectangular lattice is presented on the right. The notation wave vector number is used to indicate the location of 

the wave vector on the boundary of the irreducible Brillouin zone. Only the first five eigenmodes are displayed. 

width 5.3% between bands 3 and 4. This gap is indicated by the yellow bar shown in Figure 22. 

The MPB computer code predicts two other band gaps, but these gaps are so small, their 

existence is questionable, i.e., they spuriously result because of numerics. The rectangular lattice 

contains no band gaps, but for larger dielectric permittivity values, one may form between modal 

frequencies four and five. The rectangular plot is characteristically jagged as are its predecessors 

for the TE propagation mode. We can now present the TM mode shapes. 

 

 At the fundamental frequencies, mode shapes for Ez are compared in Figure 23 for the 

two lattices. The square lattice is dominated by an array of monopoles, alternating in sense and 

centered at the vein spots. The rectangular lattice possesses dipole characteristics with peak 

values lying along horizontal veins. The nodes fall in two regions. The first is located along 

horizontal lines of air gap centers. The second region lies along vertical lines of gap centers; the 

periodicity for these loci extend outside of the section of the lattice shown. The peak magnitudes 

of Ez differ by less than a factor of three. Figure 24 contains plots of the real part of Ez for the 

second modal frequency. In this case, the square lattice is characterized by four-lobed wave 

structures centered at the vein spots. The polarity of these structures alternates between adjacent 

spots. Nodes exist at the air gap centers and at vein midpoints. The magnitude of these 

fluctuations is quite small. The rectangular lattice retains dipolar behavior with a horizontal 

periodicity that extends beyond the lattice segment shown. The peak field magnitudes for the 

rectangular lattice exceed those for the corresponding square lattice mode. In the y direction, 

peaks in Ez alternate between air gap centers making for distinct y-oriented dipolar wave 
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Figure 23. Real part of Ez for the fundamental TM mode computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the 

square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 8.90 

 

 

 
Figure 24. Real part of Ez for the TM mode at the second modal frequency computed at (left) k-point (wave vector) 2π/a 

(0.5,0.5,0) in the square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 

8.90 

structures. Note that here is a clear phase difference between the first two rectangular modes. 

Mode plots for the third frequency are shown in Figure 25. 

 

 For the third modal frequency, the square lattice is dominated by an array of dipoles 

oriented in the x direction. The magnitude of the associated fluctuations is quite small with 

respect to the fundamental mode. The dipoles are centered within the air gaps; their senses 

alternate from those in adjacent cells. On the other hand, Ez in the rectangular lattice is composed 
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of more complicated dipoles oriented in the y direction. There is also a periodicity cast in the x 

direction, yet it extends beyond the segment of the lattice shown. The peak magnitudes are 

centered along the vertically oriented veins. The nodes are located also along these veins but 

occur at the air gap center. The peaks are juxtaposed to sides of the center making for an 

interesting wave form. This effect is a sign of higher order modal behavior. Of course, there are 

also lines of vertically oriented nodes as indicated at the right side of the rectangular lattice plot. 

This behavior is contrasted with that occurring for 521.  in the next section. 

 

 
Figure 25. Real part of Ez for the TM mode at the third modal frequency computed at (left) k-point (wave vector) 2π/a 

(0.5,0.5,0) in the square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 

8.90 

 

4.4 Transverse Magnetic (TM) Wave Propagation at 521.  

 

 TM electromagnetic wave propagation has been analyzed for the two test lattices with the 

index of refraction set to 1.52 in the dielectric veins. Band diagrams for the lattices are provided 

in Figure 26. In this case, no band gaps are observed in either lattice. The rectangular lattice does 

have the jagged appearance that we encountered in preceding section. We continue with a brief 

examination of the electric field mode shapes.  Figure 27 contains plots for Ez mode shapes 

at the fundamental frequencies for both the square and rectangular lattices. The square lattice is 

dominated by monopoles centered at the vein spots. The rectangular lattice is characterized by 

dipoles oriented in the y direction. The peak field distributions are centered on the horizontal 

dielectric veins. There is also a secondary periodicity in the x direction that extends beyond the 

lattice segment shown. The field magnitudes differ by less than a factor of two between the two 

lattices at the fundamental frequencies. In Figure 28, the modal shapes for Ez are plotted. The 

square lattice is dominated by a complicated mode shape with nodes distributed along the veins. 

As previously encountered, the rectangular lattice is dominated by dipoles oriented in the y 

direction, but with a long wave periodicity in the x direction. In this case, the rectangular 
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Figure 26. Dispersion relations for transverse magnetic (TM) wave propagation in the square and rectangular dielectric 

vein lattices at relative permittivity 1.52. The dispersion relation for the square lattice is shown in the left plot while the 

plot for rectangular lattice is presented on the right. The notation wave vector number is used to indicate the location of 

the wave vector on the boundary of the irreducible Brillouin zone. Only the first five eigenmodes are displayed. 

 

 

 
Figure 27. Real part of Ez for the fundamental TM mode computed at (left) k-point (wave vector) 2π/a (0.5,0.5,0) in the 

square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 1.52 

lattice’s field magnitude exceeds the magnitude on the square lattice. Figure 29 contains the 

contours for the real part of Ez at frequencies for the third mode. This electric field component 

again has a very compact appearance on the lattice. Field oscillations are centered at the vein 

spots, but the magnitudes, at least with respect to the fundamental, are very small. The sense of 

the field reverses at alternating spots. In some sense, the field behaves in a dipolar manner, but 

the fluctuations are complex. On the other hand, the rectangular field has complicated dipolar 

characteristics with a primary orientation in the y direction. Peaks appear on the horizontal veins 
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Figure 28. Real part of Ez for the TM mode at the second modal frequency computed at (left) k-point (wave vector) 2π/a 

(0.5,0.5,0) in the square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 

1.52 

 

Figure 29. Real part of Ez for the TM mode at the third modal frequency computed at (left) k-point (wave vector) 2π/a 

(0.5,0.5,0) in the square lattice and at (right) k-point 2π/a (0.5,1.9,0) in the rectangular lattice. Vein dielectric permittivity 

1.52 

 

and at every third of the air gap. Of course, there is a long wave periodicity that extends in the x 

direction outside of the lattice segment shown. A significant investment of time can be required 

to fully examine and understand the implications of both TE and TM modal solutions. It is also 

important to note that we have only presented the shapes for three distinct frequencies associated 

with each of these modes. Obviously, there are many other modes. Instead of exploring higher 

order modes, it is instructive to turn our attention to interpreting the impact on light coloration 

associated with some of the modes detailed above. 
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4.5 Comparing Results for the Two Lattices 

 In preceding section, we have discussed a modal analysis of electromagnetic wave 

propagation for square and rectangular 2D crystal lattices. Our interest now lies in studying how 

differently light propagates on the rectangular lattice than on the square lattice. For high relative 

dielectric permittivity values, the square lattice possesses band gaps. Since the rectangular unit 

cell geometry is “closer” in shape to the photonic crystal mentioned in Section 3, one may ask if 

band gaps can appear for this lattice, especially for the relative dielectric permittivity of chitin, a 

value quite near unity. The square lattice’s field exhibits highly uniform mode shapes when 

sampled at the so-called M k-point 2π/a (0.5.0.5.0). The electric field fluctuations are usually 

centered on each lattice spot, air gap center or at the midpoint of the dielectric vein. There are 

phase differences between the x and y components of the field lattice, but the phase difference is 

the width of one unit cell. This behavior is echoed for the square lattice at the lower value of 

521. , yet in this case, no band gaps exist. Band gaps are usually created when the 

differences in   are high across the lattice since the field concentrates in regions of high  .[2] 

At this reduced dielectric value, the differences are too small to generate band gaps. 

 

 Our interest is to see if similar behavior occurs for the rectangular lattice, even at the 

higher dielectric value. The calculations show that the rectangular field is very different. 

Although the field fluctuations are periodic on the rectangular lattice, the periodicity in the x 

direction is manifested over a distance of several unit cells. That is to say, for the square lattice, 

the period for a complete field oscillation is no more than two cells. For the rectangular case, the 

period in the y direction is usually two cells, but in the x direction, a period of field oscillation 

may encompass eight unit cells. Also, on the rectangular lattice, the field components usually 

consist of dipoles that are elongated in the x direction. As the modal order increases, these 

dipoles tend to adopt more complex structure. On the other hand, the square lattice’s field adopts 

complexity through both dipole and quadrupole behavior centered in the each cell, vein spot or 

vein midpoint. There is also a phase difference observed for the rectangular lattice, but in the x 

direction, the difference is comprised of several cell widths. The reason for the field behavior 

observed for the rectangular lattice is likely due to field concentration caused by the close 

spacing of the dielectric veins in the y direction. Recall that a unit cell is about 26% as wide as it 

is long. Since the electric field tends to reside mostly within the higher dielectric material, the 

close spacing tends to elongate the field in the x direction making band gap formation difficult, 

especially for lower values of  . It is necessary to get the dielectric and air bands to separate in 

order for band gaps to form. It simply does not happen for the rectangular lattice under these 

conditions. Still, it is important to say that this assertion is merely conjecture, not proof. 

 

4.6 Example Calculation Set at the Micron Scale 

 

 Preceding discussions have presented a modal analysis of electromagnetic wave 

propagation within dimensionless 2D square and rectangular vein crystal lattices for two 

different relative dielectric permittivity values. In this section, we apply dimensions to the 

rectangular model and deduce the wavelengths of light propagated for different wave vectors 

existing at the border of the Brillouin zone. The selection of a particular k-point implies a 

propagation direction for the mode. Since mirror symmetry is enforced in this study, all modes 
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(electromagnetic waves) are confined to the xy-plane. The wavenumber k for the mode is simply 

derived as the magnitude of the wave vector, i.e., 

 

                                                            222

zyx kkkk  |k|                                                    (49) 

 

From the wavenumber, we can easily determine the wavelength   for the mode. To do so, we 

use the formula 

 

                                                                        
k




2
                                                                (50) 

 

For dimensionless input, the MPB computer code produces dimensionless output.[2] This 

procedure offers great utility since dimensionless solutions can be scaled into any system of units 

desired. The dimensionless wave vector k  may be expressed in terms of the dimensioned wave 

vector k  as follows 

 

                                                                       
2

ak
k                                                                  (51) 

 

The dimensionless angular frequency   is expressed in terms of the dimensioned angular 

frequency by the formula 

 

                                                                      
c

a






2
                                                               (52) 

 

where c is the speed of light in vacuum, approximately 
8109972 . m/s. Equations (51) and (52) 

may be used to convert k  and   into their dimensioned equivalents. 

 

 For a specific example regarding the lattice shown in Figure 6, the lattice constant is set 

to 0.333 μm (or 
6103330 . m). By sweeping over the wave vectors at the edge of the Brillouin 

zone shown in Figure 7, we obtain the range of wave numbers and wavelengths shown in Figure 

30 for 908. . As is evidenced by Figure 30, for the selection of wave vectors, the rectangular 

lattice mostly admits light waves in the range of 0.25 μm to 3.5 μm with corresponding wave 

numbers between 0 rad/μm to 40 rad/μm. The wavelength range is of course broader than that 

stated due to the singularity at k = 0. Recall that the Brillouin zone does include the wave vector 

),,(k 000 . The frequency loci can also be transformed into a common system of units for each 

mode. Figure 31 contains this plot for 908. . 

 

 



DISTRIBUTION A 

DISTRIBUTION A 

 

31 

 

 
Figure 30. Wavelengths and wave numbers predicted for a rectangular lattice with lattice constant set at 0.333 μm and a 

vertical aspect ratio of 0.26315. The wavelength unit is micrometers; the wave number unit is tens of radians per 

micrometer. Relative dielectric permittivity is set at 8.90 

 

Figure 31. Band or mode frequencies predicted for a rectangular lattice with lattice constant set at 0.333 μm and a 

vertical aspect ratio of 0.26315, relative dielectric permittivity 8.90. The frequency unit is Petahertz.  

The dimensioned frequency plot has an appearance that is identical to that for the dimensionless 

frequency graph shown in Figure 8. Now real frequency units are assigned. Similar calculations 

can be performed on the same lattice with 521. . The resulting wavelength and wave number 

distributions are the same as shown in shown in Figure 30 since the Brillouin zone is the same. 

The attendant frequency plot is provided in Figure 32. On the whole, a major effect of reducing 

the relative permittivity on the rectangular lattice is to elevate the modes to higher frequencies 

and to increase the jaggedness of the frequency plots. In some cases, the separation in frequency 

between modes also shrinks. In terms of light coloration, this example largely involves light in 

the wavelength range of 0.25 μm to 3.5 μm (250 nm to 3,500 nm). For the first Brillouin zone, 

this band is roughly concurrent with the visible spectrum and the near infrared. As one may 

conclude, this solution procedure renders a wealth of information on the behavior of 

electromagnetic radiation in the photonic crystal and allows very precise control over wave 

number and frequency combinations for research consideration. 
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Figure 32. Band or mode frequencies predicted for a rectangular lattice with lattice constant set at 0.333 μm and a 

vertical aspect ratio of 0.26315, relative dielectric permittivity 1.52. The frequency unit is Petahertz.  
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5 CONCLUSIONS 

 

 A frequency-based solution method for the propagation of electromagnetic waves has 

been discussed in this report. Specifically, modal frequencies and shapes for square and 

rectangular 2D photonic crystals have been calculated for two different relative dielectric 

permittivity values. In this study, the high permittivity values are confined to dielectric veins. A 

principal result is that for the high permittivity case, a band gap exists for the square lattice in 

both the transverse electric and magnetic waves. No such gaps exist for the specific rectangular 

lattice (rectangular ratio - 1:0.26) considered here. For the low permittivity analyses, no band 

gaps exist for either lattice. These calculations may be repeated for the higher permittivity value 

312.  in direct correspondence with a proper value for chitin. However, this oversight has 

little impact on the results. The frequencies are affected only to a small degree for the higher 

order modes. Details concerning the electric field components have been discussed for each 

lattice. Significant differences between electric fields for the square and rectangular lattices have 

been highlighted. The level of field compression caused by the close spacing of dielectric veins 

seems to cause waves on the rectangular lattice to depart from those observed for the square 

lattice. A point of future interest may be to determine what minimal changes need be made to the 

rectangular lattice in order to motivate the appearance of band gaps. We may also continue to 

add geometric complexity to the rectangular lattice in order to make it better representative of the 

butterfly wing lattice introduced early in this report. Such investigations are under consideration 

for a forthcoming program of research. As a collateral benefit, this project has served to exercise 

the author’s skills both in utilizing MPB in working with the equations of electromagnetism. 

Musculature for the latter has sadly atrophied a bit with the passage of time. 
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